1.1 Functions

A Relations

A (binary) relation is defined as a set of ordered pairs (x, y).

A relation can be described using:

- words
- graphs
- equations
- inequalities
- sets of ordered pairs
- mapping diagrams

B Domain and Range of a Relation

The domain of the relation is the set of all the x values such that the ordered pair (x, y) satisfies the relation (is an element of the relation).
The range of the relation is the set of all the y values such that the ordered pair (x, y) satisfies the relation (is an element of the relation).

C Functions

A function from a set X (called the domain) to a set Y (called the range) is a rule that assign to each element $x \in X$ exactly one element $y \in Y(f: X \rightarrow Y)$.

Use the function notation to represent the correspondence:

$$
y=f(x)
$$

- x is called the argument or the input of the function
- y is called the value or the output of the function

Reading: "f of x " or " f at x "

D Graph

The graph of a function f is the graph of the set of ordered pairs (x, y) where $y=f(x)$.

Ex 1. A relation is given by its graph as shown in the figure below. Write the relation as a set of ordered pairs.

Ex 2. Find the domain and the range of the relation defined by the following mapping diagram:

Ex 3. Consider the function $f(x)=(x-1)^{2}$. Find:
a) $f(0)$
b) $f\left(\frac{1}{2}\right)$
c) $f(a+2)$

Ex 4. Graph the function defined by a set of ordered pairs: $f=\{(2,3),(0,-2),(-4,3),(4,0),(-3,-3)\}$.

E The Vertical Line Test

Any function is a relation but not all relations are functions.
A graph represents a function if every vertical line intersects the graph in at most one point.

Ex 5 . For each case, verify if the set of ordered pairs represents or does not represent a function.
a) $f=\{(0,0),(-1,-1),(2,2),(1,-1)\}$
b) $f=\{(2,3),(-1,3),(2,-2),(-3,-1)\}$

Ex 6. For each case, verify if the graph represents or does not represent a function.
a)
b)

F Domain and Range

The domain D of a function f is the set of all real numbers x for which $y=f(x)$ is defined.
The range R of a function f is the set of all real numbers y for which $y=f(x)$ is defined.
c)

d)

Ex 7. Find the domain and the range of each function defined by a set of ordered pairs.
a) $f=\{(-2,0),(-1,1),(0,-1),(1,0)\}$
b) $f=\{(-1,0),(0,1),(1,0),(3,1),(7,0)\}$
c) d) function defined by its graph.
a)
b)

G Restrictions

Division by 0 is not defined. So:

$$
\text { denominato } r \neq 0
$$

Square root is defined for a non negative number. So:

$$
\sqrt{x} ; \quad x \geq 0
$$

A square is not a negative number. So:

$$
x^{2} \geq 0
$$

A square root is not a negative number. So:

$$
\sqrt{x} \geq 0
$$

Ex 9. Use the restrictions to find the domain and the range of each function defined by a formula.
a) $y=(x-1)^{2}-3$
b) $y=2+\sqrt{x-3}$
c) $y=\frac{x-2}{x+2}$

Reading: Nelson Textbook, Pages 4-10
Homework: Nelson Textbook, Page 11: \#1, 2, 3, 4, 5, 8, 10, 12, 14, 15

